Abstract

Intense and localized interlaminar stresses generally occur in a narrow boundary region near the free edge of a multilayered anisotropic laminate under mechanical and temperature loads. Quantitative measures of interlaminar action across interfaces may be readily obtained through purely algebraic operations, even if nonlinear and inelastic material behavior becomes significant in the boundary region due to severe strain concentration. These measures are the limiting values of the Lekhnitskii stress functions F and $$ (and of the normal derivative of F) along interfaces and toward the interior region of the laminate. In the present work, they are used as the basis of an exceedingly simple and efficient method of interlaminar stress analysis that is potentially applicable to free-edge problems involving nonlinear thermoelastic constitutive relations. Example solutions are obtained for symmetric, four-layer, cross-ply and angle-ply laminates under a temperature load and two different types of strain loads, and the results are found to be in reasonable agreement with the existing numerical and analytical solutions based on elaborate analysis methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.