Abstract

A novel and simple method for petroleum emulsion breaking and desalting is described and applied to crude oil. Such complex samples consist of stable water–oil emulsions. The oil phase is comprised of petroleum whereas the aqueous phase is composed of brine, including seawater, with varying salt content. Herein, crude oil dewatering was performed by applying a small aliquot of sample to a supported-liquid extraction cartridge. Multiphasic equilibration allowed the aqueous phase to adsorb onto the surface of porous diatomaceous earth (e.g., Celite). Organic solvents such as n-heptane, methylene chloride, and toluene easily desorbed the remaining oil phase. Potentiometric Karl Fisher titration and conductivity analysis confirmed near exhaustive (>98%) water and salt removal alongside particulate matter. This phenomenon was strikingly observed in both mild and harsh salt content conditions with concentrations ranging from zero to 200 000 ppm; the latter is found in Brazilian presalt crude oil samples. Quanti...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.