Abstract
BackgroundParkinson disease (PD) is a common movement disorder. Patients with PD have multiple gait impairments that result in an increased risk of falls and diminished quality of life. Therefore, gait measurement is important for the management of PD.ObjectiveWe previously developed a smartphone-based dual-task gait assessment that was validated in healthy adults. The aim of this study was to test the validity of this gait assessment in people with PD, and to examine the association between app-derived gait metrics and the clinical and functional characteristics of PD.MethodsFifty-two participants with clinically diagnosed PD completed assessments of walking, Movement Disorder Society Unified Parkinson Disease Rating Scale III (UPDRS III), Montreal Cognitive Assessment (MoCA), Hamilton Anxiety (HAM-A), and Hamilton Depression (HAM-D) rating scale tests. Participants followed multimedia instructions provided by the app to complete two 20-meter trials each of walking normally (single task) and walking while performing a serial subtraction dual task (dual task). Gait data were simultaneously collected with the app and gold-standard wearable motion sensors. Stride times and stride time variability were derived from the acceleration and angular velocity signal acquired from the internal motion sensor of the phone and from the wearable sensor system.ResultsHigh correlations were observed between the stride time and stride time variability derived from the app and from the gold-standard system (r=0.98-0.99, P<.001), revealing excellent validity of the app-based gait assessment in PD. Compared with those from the single-task condition, the stride time (F1,103=14.1, P<.001) and stride time variability (F1,103=6.8, P=.008) in the dual-task condition were significantly greater. Participants who walked with greater stride time variability exhibited a greater UPDRS III total score (single task: β=.39, P<.001; dual task: β=.37, P=.01), HAM-A (single-task: β=.49, P=.007; dual-task: β=.48, P=.009), and HAM-D (single task: β=.44, P=.01; dual task: β=.49, P=.009). Moreover, those with greater dual-task stride time variability (β=.48, P=.001) or dual-task cost of stride time variability (β=.44, P=.004) exhibited lower MoCA scores.ConclusionsA smartphone-based gait assessment can be used to provide meaningful metrics of single- and dual-task gait that are associated with disease severity and functional outcomes in individuals with PD.
Highlights
Parkinson disease (PD) is a common neurodegenerative disease associated with numerous movement disorders and symptoms
High correlations were observed between the stride time and stride time variability derived from the app and from the gold-standard system (r=0.98-0.99, P
Participants who walked with greater stride time variability exhibited a greater UPDRS III total score, Hamilton Anxiety (HAM-A), and Hamilton Depression (HAM-D)
Summary
Parkinson disease (PD) is a common neurodegenerative disease associated with numerous movement disorders and symptoms. Mancini and colleagues [8] showed that using six wearable motion sensors consisting of a gyroscope, accelerometer, and digital compass attached on the left and right wrists, chest, lumber, and left and right shanks can accurately measure the temporal and spatial metrics of gait in multiple cohorts. Such assessments are typically limited to clinical and laboratory settings, and require in-person contact with trained study personnel to reliably administer protocols and standardized instructions [9,10]. Gait measurement is important for the management of PD
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.