Abstract

BackgroundSimple sequence repeats (SSRs) are highly variable features of all genomes. Their rapid evolution makes them useful for tracing the evolutionary history of populations and investigating patterns of selection and mutation across gnomes. The recently sequenced Daphnia pulex genome provides us with a valuable data set to study the mode and tempo of SSR evolution, without the inherent biases that accompany marker selection.ResultsHere we catalogue SSR loci in the Daphnia pulex genome with repeated motif sizes of 1-100 nucleotides with a minimum of 3 perfect repeats. We then used whole genome shotgun reads to determine the average heterozygosity of each SSR type and the relationship that it has to repeat number, motif size, motif sequence, and distribution of SSR loci. We find that SSR heterozygosity is motif specific, and positively correlated with repeat number as well as motif size. For non-repeat unit polymorphisms, we identify a motif-dependent end-nucleotide polymorphism bias that may contribute to the patterns of abundance for specific homopolymers, dimers, and trimers. Our observations confirm the high frequency of multiple unit variation (multistep) at large microsatellite loci, and further show that the occurrence of multiple unit variation is dependent on both repeat number and motif size. Using the Daphnia pulex genetic map, we show a positive correlation between dimer and trimer frequency and recombination.ConclusionsThis genome-wide analysis of SSR variation in Daphnia pulex indicates that several aspects of SSR variation are motif dependent and suggests that a combination of unit length variation and end repeat biased base substitution contribute to the unique spectrum of SSR repeat loci.

Highlights

  • Simple sequence repeats (SSRs) are highly variable features of all genomes

  • In order to enumerate all types of simple sequence repeats (SSR) in the Daphnia pulex genome, we first identified all SSR loci in the largest 100 scaffolds (Daphnia pulex assembly 9/01/2006; N50 = 103) with repeat motifs from 1 to 100 nucleotides, repeated perfectly three or more times

  • Motif size is defined by the length of the set of nucleotides that are repeated, while repeat number reflects the number of times that set is repeated

Read more

Summary

Introduction

Simple sequence repeats (SSRs) are highly variable features of all genomes. Their rapid evolution makes them useful for tracing the evolutionary history of populations and investigating patterns of selection and mutation across gnomes. The recently sequenced Daphnia pulex genome provides us with a valuable data set to study the mode and tempo of SSR evolution, without the inherent biases that accompany marker selection. Tandem arrays of DNA nucleotides, known as simple sequence repeats (SSR), are extremely dynamic parts of the genome. These tandem repeats vary in motif sequence, length, and repeat number. The highly polymorphic nature of SSRs makes them desirable for use in both genotyping and population-level evolutionary studies. Simple sequence repeats may influence the fitness of the organism [1], and in specific cases are known to be causal of human disease [1].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call