Abstract

Macroparticle tracking is a direct and attractive approach to following the evolution of a phase space distribution. When the particles interact through short range wake fields or when inter-particle force is included, calculations of this kind require a large number of macroparticles. It is possible to reduce both the number of macroparticles required and the number of tracking steps per unit simulated time by employing a simple scaling which can be inferred directly from the single-particle equations of motion. In many cases of practical importance the speed of calculation improves with the fourth power of the scaling constant. Scaling has been implemented in an existing longitudinal tracking code; early experience supports the concept and promises major time savings. Limitations on the scaling are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call