Abstract
Understanding the biological role of protein-linked glycans requires the reliable identification of glycans. Isomer separation and characterization often entail mass spectrometric detection preceded by high-performance chromatography on porous graphitic carbon. To this end, stable isotope-labeled glycans have emerged as powerful tools for retention time normalization. Hitherto, such standards were obtained by chemoenzymatic or purely enzymatic methods, which introduce, e.g., 13C-containing N-acetyl groups or galactose into native glycans. Glycan release with anhydrous hydrazine opens another route for heavy isotope introduction via concomitant de-N-acetylation. Here, we describe that de-N-acetylation can also be achieved with hydrazine hydrate, which is a more affordable and less hazardous reagent. Despite the slower reaction rate, complete conversion is achievable in 72 h at 100 °C for glycans with biantennary glycans with or without sialic acids. Shorter incubation times allow for the isolation of intermediate products with a defined degree of free amino groups, facilitating introduction of different numbers of heavy isotopes. Mass encoded glycans obtained by this versatile approach can serve a broad range of applications, e.g., as internal standards for isomer-specific studies of N-glycans, O-glycans, and human milk oligosaccharide by LC-MS on either porous graphitic carbon or─following permethylation─on reversed phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.