Abstract

Phase-gradient metasurfaces are two-dimensional (2D) optical elements that can manipulate light by imposing local, space-variant phase changes on an incident electromagnetic wave. These metasurfaces hold the potential and the promise to revolutionize photonics by providing ultrathin alternatives for a wide range of common optical elements such as bulky refractive optics, waveplates, polarizers, and axicons. However, the fabrication of state-of-the-art metasurfaces typically requires some time-consuming, expensive, and possibly hazardous processing steps. To overcome these limitations on conventional metasurface fabrication, a facile methodology to produce phase-gradient metasurfaces through one-step UV-curable resin printing is developed by our research group. The method dramatically reduces the required processing time and cost, as well as eliminates safety hazards. As a proof-of-concept, the advantages of the method are clearly demonstrated via a rapid reproduction of high-performance metalenses based on the Pancharatnam-Berry phase gradient concept in the visible spectrum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call