Abstract

A simple regular black hole solution satisfying the weak energy condition is obtained within Einstein--non--linear electrodynamics theory. We have computed the thermodynamic properties of this black hole by a careful analysis of the horizons and we have found that the usual Bekenstein--Hawking entropy gets corrected by a logarithmic term. Therefore, in this sense our model realizes some quantum gravity predictions which add this kind of correction to the black hole entropy. In particular, we have established some similitudes between our model and a quadratic generalized uncertainty principle. This similitude has been confirmed by the existence of a remnant, which prevents complete evaporation, in agreement with the quadratic generalized uncertainty principle case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.