Abstract

BackgroundAmplified fragment length polymorphism is a popular DNA marker technique that has applications in multiple fields of study. Technological improvements and decreasing costs have dramatically increased the number of markers that can be generated in an amplified fragment length polymorphism experiment. As datasets increase in size, the number of genotyping errors also increases. Error within a DNA marker dataset can result in reduced statistical power, incorrect conclusions, and decreased reproducibility. It is essential that error within a dataset be recognized and reduced where possible, while still balancing the need for genomic diversity.ResultsUsing simple regression with a second-degree polynomial term, a model was fit to describe the relationship between locus-specific error rate and the frequency of present alleles. This model was then used to set a moving error rate threshold that varied based on the frequency of present alleles at a given locus. Loci with error rates greater than the threshold were removed from further analyses. This method of selecting loci is advantageous, as it accounts for differences in error rate between loci of varying frequencies of present alleles. An example using this method to select loci is demonstrated in an amplified fragment length polymorphism dataset generated from the North American prairie species big bluestem. Within this dataset the error rate was reduced from 12.5% to 8.8% by removal of loci with error rates greater than the defined threshold. By repeating the method on selected loci, the error rate was further reduced to 5.9%. This reduction in error resulted in a substantial increase in the amount of genetic variation attributable to regional and population variation.ConclusionsThis paper demonstrates a logical and computationally simple method for selecting loci with a reduced error rate. In the context of a genetic diversity study, this method resulted in an increased ability to detect differences between populations. Further application of this locus selection method, in addition to error-reducing methodological precautions, will result in amplified fragment length polymorphism datasets with reduced error rates. This reduction in error rate should result in greater power to detect differences and increased reproducibility.

Highlights

  • Amplified fragment length polymorphism is a popular DNA marker technique that has applications in multiple fields of study

  • The method proposed in this paper uses a simple regression approach to implement a moving error rate threshold that is optimized based on the frequency of present alleles at a given locus

  • This paper demonstrates the use of simple regression to model the relationship between error rate and the frequency of present alleles

Read more

Summary

Introduction

Amplified fragment length polymorphism is a popular DNA marker technique that has applications in multiple fields of study. Technological improvements and decreasing costs have dramatically increased the number of markers that can be generated in an amplified fragment length polymorphism experiment. Error within a DNA marker dataset can result in reduced statistical power, incorrect conclusions, and decreased reproducibility. It is essential that error within a dataset be recognized and reduced where possible, while still balancing the need for genomic diversity. Due to the time and cost associated with these decisions, having accurate and reproducible data is essential. Technology improvements and reduced costs have resulted in genotype information increasing exponentially. As a result of these efforts genotyping error can be reduced, but is rarely eliminated within DNA marker datasets

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.