Abstract

This paper introduces a simple recursive algorithm for nonlinear dynamic system identification using linear-in-the-parameters models for NARX or RBF network where both the structure and parameters can be obtained simultaneously and recursively. The main objective is to improve the numerical stability when the model terms are highly correlated. This is based on the “innovation” idea and net contribution criteria. Using the recursive formulae for the computation of the Moore-Penrose inverse of matrices and the net contribution of model terms, it is possible to combine the structure term determination and parameters estimation within one framework by adding and deleting an item in the selected candidate model. The formulae for enhancing and reducing a matrix are given. Simulation results show the proposed method is numerically more stable than existing approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.