Abstract
This study examined the influence of stimulus chromaticity on simple reaction times (RTs) to determine the stage of chromatic processing that is most influential in their generation. Simple RTs were measured in response to the cosinusoidally ramped onset of small, equiluminant, colored Gaussian spots. The chromaticity of these stimuli was varied, to modulate along a series of vectors in color space that included red-green (L-M) and blue-yellow (S-[L+M]) opponent axes. RTs are highly sensitive to small departures from subjective equiluminance. They are also dependent on stimulus chromaticity. The longest RTs are generated in response to equiluminant stimuli that isolate S-cone activity, whereas the shortest are generated by stimuli that modulate the L-M opponent axis. However, temporal processing differences are highly dependent on how the chromatic stimuli are scaled in relation to one another. The differences are reduced when scaling is based on detection threshold. The relationship between chromatic contrast and RT can be described by the modified Piéron equation RT = RT(0) + k x C(-1). Simple RTs generated in this study conform to the idea that they are largely determined by cone-opponency mechanisms. The use of cone contrast as a metric for scaling chromatic stimuli exaggerates differences between the temporal responsiveness of L-M and S-(L+M) opponency mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.