Abstract

Quantum key distribution (QKD) is a technology that allows secure key exchange between two distant users. A widespread adoption of QKD requires the development of simple, low-cost, and stable systems. However, implementation of the current QKD requires a complex self-alignment process during the initial stage and an additional hardware to compensate the environmental disturbances. In this study, we present the implementation of a simple QKD with the help of a stable transmitter-receiver scheme, which simplifies the self-alignment and is robust enough to withstand environmental disturbances. In case of the stability test, the implementation system is able to remain stable for 48 h and exhibits an average quantum bit error rate of less than 1% without any feedback control. The scheme is also tested over a fiber spool, obtaining a stable and secure finite key rate of 7.32k bits per second over a fiber spool extending up to 75 km. The demonstrated long-term stability and obtained secure key rate prove that our method of implementation is a promising alternative for practical QKD systems, in particular, for CubeSat platform and satellite applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.