Abstract

We analyze the newly proposed quantum feedback loop for a solid-state qubit, based on monitoring the quadrature components of the current from a weakly coupled detector, which continuously measures the qubit. Similar to the earlier proposal of the Bayesian feedback, the feedback loop is used to maintain the coherent (Rabi)oscillations in a qubit for an arbitrarily long time; however, this is done in a significantly simpler way, which requires much smaller bandwidth of the control circuitry. The price for simplicity is a less-than-ideal operation: the fidelity is limited to about 95%. The feedback loop operation can be experimentally verified by appearance of a positive in-phase component of the detector current relative to an external oscillating signal used for synchronization. The quadrature-based quantum feedback seems to be within the reach of the present-day technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.