Abstract

A simple method for the non-linear static analysis of complex building structures subjected to monotonically increasing horizontal loading (push-over analysis) is presented. The method is designed to be a part of new methodologies for the seismic design and evaluation of structures. It is based on the extension of a pseudo-three-dimensional mathematical model of a building structure into the non-linear range. The structure consists of planar macroelements. For each planar macroelement, a simple bilinear or multilinear base shear%top displacement relationship is assumed. By a step-by-step analysis an approximate relationship between the global base shear and top displacement is computed. During the analysis the development of plastic hinges throughout the building can be monitored. The method has been implemented into a prototype computer program. In the paper the mathematical model, the base shear%top displacement relationships for different types of macroelements, and the step-by-step computational procedure are described. The method has been applied for the analysis of a symmetric and an asymmetric variant of a seven-storey reinforced concrete frame-wall building, as well as for the analysis of a complex asymmetric 21-storey reinforced concrete wall building. The influence of torsion on structural behaviour is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.