Abstract

In invertebrate photoreceptors, illuminated rhodopsin activates multiple G proteins, which are assumed to initiate multiple phototransduction cascades. In this paper, we focused on one of the phototransduction cascades, which utilizes rhodopsin, a Gq-like G protein, and phospholipase C (PLC). A Gq-like G protein from octopus photoreceptors was successfully purified to apparent homogeneity as an active form by simple two-step chromatography. The purified G protein had an alpha beta gamma-trimeric structure consisting of 44-kDa alpha, 37-kDa beta, and 9-kDa gamma subunits. The 44-kDa alpha subunit was assigned to the Gq class by western blot with antiserum against mammalian Gq alpha and by partial amino acid sequencing of its proteolytic fragments. Light-dependent binding of GTP gamma S was observed when the purified octopus Gq was reconstituted with octopus rhodopsin that had been integrated into phospholipid vesicles. Octopus Gq activated PLC beta 1 purified from bovine brain dose-dependently in the presence of A1F4-. Finally, light- and GTP-dependent activation of PLC beta 1 was observed in a reconstitution system consisting of octopus rhodopsin, Gq, and bovine PLC beta 1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.