Abstract
Abstract A simple and efficient method was developed for preparing medium density fiberboard (MDF) reinforced with chitosan via the traditional hot-press manufacturing process. The mechanical and dimensional properties of the MDF were investigated as a function of the chitosan amount. At the 4% level of added chitosan, the MDF reached the optimal performance and met completely the requirements of the Chinese national standard GB/T 11718-2009. Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction (XRD) characterizations revealed that wood fibers and chitosan might interact with each other through the formation of hydrogen and amide bonds during the hot-pressing process. The fracture surfaces of the MDFs are indicative for strong bonds at the interface, which explain the excellent MDF performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.