Abstract

AbstractThe chaotic behavior of fixed‐point methods for steady‐state process simulation is studied. It is shown that direct substitution and Newton's method exhibit all of the rich structure of chaos (period doubling, aperiodicity, fractal basin boundaries, and related properties) on simple process examples. These examples include finding roots to the Soave‐Redlich‐Kwong and Underwood equations, dew point and flash calculations for heterogeneous mixtures, and a simple process flowsheet.For single variable problems, it is shown that direct substitution follows a classical period‐doubling route to chaos. On the other hand, the chaotic behavior of direct substitution and Newton's method on multivariable problems is considerably more complex, and can give the appearance that no organized route to chaos is followed. For example, for the dew point problems, truncated period doubling, odd periodic cycles, and chaotic behavior can be observed, within which are embedded narrow regions of global convergence. Many numerical results and geometric illustrations are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.