Abstract

The literature of radar contains results of Rice, Marcum, Swerling, and Schwartz in several families of curves, which permit radar engineersto estimate the signal energy ratio required for a given level of detectionperformance. The variety of radar problems, however, makes itimpractical to construct curves for all combinations of radar and targetparameters. The concept of detector loss is used here to evaluate lossesattributable to integration and collapsing, with an accuracy of ±0.3 dBon steady targets. This is added to a separate fluctuation loss, modifiedfor diversity effects, to obtain results on all Swerling target modelsand also on partially correlated targets. The accuracy of the combinedlosses is ±0.5 dB for a wide range of detection and false-alarm probabilities.Starting from the basic single-sample detection curves, onlythree additional graphs are needed to find the energy ratio for givendetection performance in any of these cases. Examples are given whichshow the ease with which different radar options may be compared asto performance on an arbitrary type of target.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.