Abstract

A simple inorganic/organic nanocomposite was used to generate long-lasting phosphorescent pebbles for easy commercial manufacturing of smart products. An organic/inorganic nanocomposite was made from low-molecular-weight unsaturated polyester and rare-earth-activated strontium aluminum oxide nanoparticles doped with europium and dysprosium. The polyester resin was mixed with phosphorescent strontium aluminate oxide nanoparticles and methylethyl ketone peroxide as a cross-linking agent to create a viscous mixture that can be hardened in a few minutes at room temperature. Before adding the hardener catalyst, the phosphorescent strontium aluminate nanoparticles were dispersed throughout the polyester resin in a homogeneous manner to ensure that the pigment did not accumulate. Long-lasting, reversible luminescence was shown by the photoluminescent substrates. The emission was reported at 515 nm upon exciting the pebble at 365 nm. In normal visible light, both blank and luminescent pebbles had a translucent appearance. As a result of UV irradiation, the photoluminescent pebbles produced an intense green color. The three-dimensional CIE Lab (International Commission on Illumination) color coordinates and luminescence spectra were used to investigate the color changing characteristics. Photophysical characteristics, including excitation, emission, and lifetime, were also investigated. Scanning electron microscopy, wavelength-dispersive X-ray fluorescence spectroscopy, and energy-dispersive X-ray analysis were employed to report the surface morphologies and elemental content. Without impairing the pebbles’ original physico-mechanical characteristics, the pebbles showed improved superhydrophobic activity. The current simple colorless long-lasting phosphorescent nanocomposite can be applied to a variety of surfaces, like ceramics, glassware, tiles, and metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.