Abstract

Manganese oxide nanoflakes incorporated functionalized multi-walled carbon nanotubes (f-MWCNTs/MnO2 NFs) have been prepared through a simple chemical method. The morphology and structure of the prepared composites were characterized by field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction spectroscopy (XRD), and X-ray photoelectron spectroscopy (XPS). Our present study demonstrated that enzymeless hydrogen peroxide sensor holds good in a wide linear range from 5 to 4530 μM with the calculated limits of detection and sensitivity values to be 0.952 μM and 219.05 μA mM−1, respectively. During hydrogen peroxide detection, f-MWCNT/MnO2 NF-modified glassy carbon electrode reached 95% of the steady-state response current within 4 s. In addition, our finding selectively detects hydrogen peroxide even in the presence of other interfering biomolecules. Ease of preparation, good electrocatalytic ability, and feasible practicality can potentially extend our fabricated electrode towards the applications of such biosensors and energy storage devices in the near future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call