Abstract

We designed a photocatalyst and developed sustainable wastewater purification technology, which have significant advantages in effectively solving the global problem of drinking water shortage. In this study, a new nanocomposite was reported and shown to be a catalyst with excellent performance; CuO was coated successively onto functionalized nano γ-Al2O3, and this novel structure could provide abundant active sites. We evaluated the performance of the CuO@γ-Al2O3 nanocomposite catalyst for polyvinyl alcohol (PVA) degradation under visible light irradiation. Under optimized conditions (calcination temperature, 450°C; mass ratio of γ-Al2O3:Cu(NO3)2·3H2O, 1:15; pH value, 7; catalyst dosage, 2.6g/L; reaction temperature, 20°C; and H2O2 dosage, 0.2g/mL), the CuO@γ-Al2O3 nanocomposite catalyst presented an excellent PVA removal rate of 99.21%. After ten consecutive degradation experiments, the catalyst could still maintain a PVA removal rate of 97.58%, thus demonstrating excellent reusability. This study provides an efficient and easy-to-prepare photocatalyst and proposes a mechanism for the synergistic effect of the photocatalytic reaction and the Fenton-like reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.