Abstract
Based on the existence of a yield surface and a memory surface which represents the maximum stress state the material ever experienced, a plasticity model is proposed to describe the inelastic behavior of metal. By choosing the initial locations and sizes of these two surfaces based on the internal structure and the loading history of materials, theoretical results have been obtained. These results compare well with available experimental observations on cyclic creep, cyclic stress relaxation and other transitory phenomena of strain softening materials under generalized cyclic loading conditions. The inelastic behavior of annealed copper subjected to nonproportional strain paths can also be predicted by the proposed model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.