Abstract

Although it is now well established that in glassy liquids, slow structural relaxation accompanies a correlated structural rearrangement, the role of such a correlation in the transport anomaly, and thus in the slow dynamics, remains unclear. In this paper, we argue from a hydrodynamic viewpoint that a correlated structure (cluster) with a characteristic size ξ sustains the long-lived stress and dynamically couples with the hydrodynamic fluctuations; therefore, the dynamics of this cluster is the origin of the mesoscopic nature of anomalous hydrodynamic transport. Based on this argument, we derive a dynamic scaling law for τ(α) (or η, where η is the macroscopic shear viscosity) as a function of ξ: τ(α)([proportionality]η)[proportionality]ξ(4). We provide a simple explanation for basic features of anomalous transport, such as the breakdown of the Stokes-Einstein relation and the length-scale-dependent decoupling between viscosity and diffusion. The present study further suggests a different physical picture: Through the coarse graining of smaller-scale fluctuations (</~ξ), the supercooled liquid dynamics can be regarded as the dynamics of normal (cluster) liquids composed of units with a typical size of ξ. Although the correlation length of hydrodynamic transport ξ and the dynamic heterogeneity size ξ(DH), which is determined by the usual four-point correlation function, reflect some aspects of the cooperative effects, the correspondence between ξ and ξ(DH) is not one to one. We highlight the possibility that ξ(DH) overestimates the actual collective transport range at a low degree of supercooling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.