Abstract

Gold/iron oxide magnetic nanoparticles are hybrid nanoparticles containing a core of magnetic iron oxide and surface colloidal gold, which allows for various biomaterials to be immobilized on the surface of the iron oxide nanoparticles via colloidal gold. Here, we developed a novel magnetic resonance (MR) imaging agent to broaden the MR tumor-imaging spectrum of superparamagnetic iron oxide nanoparticles (SPIO), e.g., Feridex(), a clinical MR imaging agent for diagnosing liver cancer. Au/Feridex was synthesized by electron beam irradiation, and thiol-modified poly(ethylene glycol) (PEG-SH) was easily conjugated to its surface via an Au-S bond without the need for any chemical reactions. PEG conjugation of Au/Feridex enhanced its accumulation in Meth-A tumor tissue and decreased its accumulation in normal liver tissue. In addition, MRI using PEG-Au/Feridex, in contrast to MRI using unmodified Au/Feridex and Feridex, detected B16BL6 and Meth-A tumor tissues in vivo. This finding indicates that PEG-Au/Feridex is useful for diagnosing various types of tumors. In addition, because the synthesis of PEG-Au/Feridex is simple and high yields are easily produced, PEG-modified SPIO for tumor diagnosis can be prepared on an industrial scale with low cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.