Abstract
A passive microfluidic mixer with high performance is designed and fabricated in this work. Diamond-shaped obstacles were chosen to split the flow into several streams, which are then guided back together after the obstacle. To keep pressure drop low, the channel cross-sectional area was maintained equal to the input cross-sectional area, and this was held constant throughout the device. The proposed design was modeled using computational fluid dynamics (CFD) software. The effects of channel width, channel length, location of obstructions, and Reynolds Number (Re) were investigated. The simulated results were verified experimentally. Simulation data showed that the designed micromixer achieved 90% mixing at a channel length of 4.35 mm with pressure drop of 584 Pa at Re = 1, while experimental data for Re = 0.1 showed 90% mixing at 7 mm. The mixer functions well especially at the low Re (Re = 0.1).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.