Abstract

In this paper, we provide polynomial coefficients and a semi-empirical relation using which one can derive photon mass energy absorption coefficient of any H-, C-, N-, O-based sample of biological interest containing any other elements in the atomic number range 2–40 and energy range 200–1500 keV. More interestingly, it has been observed in the present work that in this energy range, both the mass attenuation coefficients and the mass energy absorption coefficients for such samples vary only with respect to energy. Hence it was possible to represent the photon interaction properties of such samples by a mean value of these coefficients. By an independent study of the variation of the mean mass attenuation coefficient as well as mass energy absorption coefficient with energy, two simple semi-empirical relations for the photon mass energy absorption coefficients and one relation for the mass attenuation coefficient have been obtained in the energy range 200–1500 keV. It is felt that these semi-empirical relations can be very handy and convenient in biomedical and other applications. One possible significant conclusion based on the results of the present work is that in the energy region 200–1500 keV, the photon interaction characteristics of any H-, C-, N-, O-based sample of biological interest which may or may not contain any other elements in the atomic number range 2–40 can be represented by a sample-independent (single) but energy-dependent mass attenuation coefficient and mass energy absorption coefficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.