Abstract

Abstract Even though almost all components of an integrated gasification combined cycle (IGCC) power plant are proven and mature technologies, the sheer number of them, the wide variety of competing technologies (e.g., gasifiers, gas clean-up systems, heat recovery options), and system integration options (e.g., cryogenic air separation unit and the gas turbine), including the recent addition of carbon capture and sequestration (CCS) with its own technology and integration options, render fundamental IGCC performance analysis a monumental task. Almost all published studies utilize highly complex chemical process and power plant heat balance software, including commercially available packages and in-house proprietary codes. This makes an objective assessment of comparable IGCC plant designs, performance (and cost), and other perceived advantage claims (IGCC versus other technologies, too) very difficult, if not impossible. This paper develops a coherent simplified parametric model based on fully physics-based grounds to be used for quick design performance assessment of a large variety of IGCC power plants with and without CCS. Technology parameters are established from complex model runs and supplemented by extensive literature search. The model is tested using published data to establish its confidence interval and is satisfactory to carry conceptual design analysis at a high level to identify promising alternatives and development areas and assess the realism in competing claims.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call