Abstract

Most of the in vitro work to characterize the effects of clinical laser surgery on corneal tissues has concentrated on the effects on stromal keratocytes and endothelium with little attention being paid to corneal epithelium. Our purpose is to describe the epithelial healing rates observed in freshly cultured rabbit corneas treated with phototherapeutic keratectomy (PTK). Corneas were placed in a simple organ culture system, with media change every 2 days. A clinical excimer laser was used to perform a 6 mm diameter, 100 microm depth transepithelial PTK on 24 cultured rabbit corneas, 1 day after culture initiation. For each post-treatment day, one experimental and one control cornea were removed from culture and stained with fluorescein, photographed, and fixed for histology. Epithelial defect area was measured with digital imaging software and analyzed statistically to assess the re-epithelialization rate. Control corneas, maintained in culture for 1-4 days, had no epithelial defects. Those corneas treated with PTK exhibited an immediate epithelial defect that slowly healed over 3 days. This was confirmed on histopathological analysis. A significant linear trend in re-epithelialization across the time points studied was found (F = 80.48, P = 0.0029). The slope of the linear regression model showed an estimate rate of re-epithelialization of -6.70 over the 3 days. We have described the development of a simple, whole organ, rabbit cornea culture model for re-epithelialization after PTK. Our rates of epithelial healing resemble those found in the literature in live rabbit models. Therefore, this model may possibly be used to monitor epithelial wound healing in different corneal diseases or injuries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.