Abstract
Hematite nanoparticles have been prepared from Moringa oleifera leaf extracts. Phytochemicals are derived from plant extracts which act as a stabilizing and capping agent as well as a surfactant. This green route protocol is attractive owing to its speed, reliability, and ecofriendly and cost-effective qualities. The synthesized iron oxide nanoparticles were subjected to three different calcination temperatures (500, 600, and 700°C). The crystallinity nature and phase purity have been confirmed by powder X-ray diffraction (PXRD). Optical properties have been studied by UV-visible (UV-vis) and diffuse reflectance spectroscopy (DRS). A very narrow bandgap was observed, and absorbance was observed at the visible region. Photoluminescence spectra have exhibited a multicolor emission band from the near UV to visible region due to defect centers (F centers). EDX (energy dispersive X-ray spectrum) has given information on the stoichiometric ratio of Fe and O. The functional groups which are responsible for nanoparticle formation have been identified by Fourier transformed infrared spectroscopy (FTIR), surface morphology transformation has been illustrated by scanning electron microscopy (SEM) studies, and VSM measurements have exhibited a hysteresis curve that shows the weak and strong ferromagnetic behavior in nature at RT. TEM micrographs have confirmed that particles are in the nanorange, matching the results from the XRD report. The SAED pattern gives information on the polycrystalline nature of hematite nanoparticles. TG-DSC characterization revealed phase transition, decomposition, and weight loss information. Frequency-dependent electrical properties were studied. Here, we report what the present studies have revealed: that hematite nanopowder prepared from the green route is environmentally friendly, takes a short time to prepare, is an economical and promising candidate material for electromagnetic devices and ferromagnet manufacturing, and is a photocatalyst in water treatment applications without adding additives (H2O2).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Nanomaterials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.