Abstract

The molecular dynamics (MD) simulation is a favored method in materials science for understanding and predicting material properties from atomistic motions. In classical MD simulations, the interaction between atoms is described by an empirical interatomic potential, so the reliability of the simulation hinges on the accuracy of the underlying potential. Recently, machine learning (ML) based interatomic potentials are gaining attention as they can reproduce potential energy surfaces (PES) of abinitio calculations, with a much lower computational cost. Therefore, an efficient code for training ML potentials and inferencing PES in new configurations would widen the application range of MD simulations. Here, we announce an open-source package, SNU Interatomic Machine-learning PotentiaL packagE-version Neural Network (SIMPLE-NN) that generates and utilizes the ML potential based on the artificial neural network with the Behler–Parrinello type symmetry function as descriptors for the chemical environments. SIMPLE-NN uses the Atomic Simulation Environment (ASE) package and Google Tensorflow for high expandability and efficient training, and also supports the in-house code for quasi-Newton method. Notably, the package features a weighting scheme based on the Gaussian density function (GDF), which significantly improves accuracy and reliability of ML potentials by resolving sampling bias that exists in typical training sets. For MD simulations, SIMPLE-NN interfaces with the LAMMPS package. We demonstrate the performance and usage of SIMPLE-NN with examples of SiO2. Program summaryProgram Title: SIMPLE-NNProgram Files doi:http://dx.doi.org/10.17632/pjv2yr7pvr.1Licensing provisions: GPLv3Programming language: Python/C++Nature of problem: Inferencing the potential energy surface for the given system with accuracy comparable to ab initio methods but with much lower computational costs.Solution method: Calculate descriptor vectors that encode local chemical environment. High-dimensional neural network is used to predict the total energy from the descriptor vectors. The trained neural network can be used for molecular dynamics simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.