Abstract

Photodynamic therapy (PDT) is an effective treatment modality for various cancer types. However, tumor recurrence and metastasis stemming from residual cancer cells after PDT pose serious problems. In this study, a simple multifunctional PTX@Ce6 nanomedicine is prepared using a two-step reprecipitation method. In this core-shell nanostructure, the toxic paclitaxel (PTX) core is embedded into a nontoxic Ce6 shell. An ultralow dose of PTX (1 mg/kg) stimulates the differentiation of marrow-derived suppressor cells (MDSCs) into mature dendritic cells (DCs), resulting in the restoration of functions of tumor-specific CD8+ T cells and promotion of antitumor immune responses in vivo. Hence, the tumors in mice are eradicated with 100% tumor inhibition rate via combination therapy. Tumor recurrence and metastasis are also effectively inhibited. In addition, the combination therapy with PDT and metronomic chemotherapy based on core-shell PTX@Ce6 nanostructures shows high biosafety in treated mice. This study can aid in developing new cancer treatment modalities for eradicating tumors, preventing tumor recurrence and metastasis, and reducing the systemic side effects of therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call