Abstract

This paper introduces a new simple moment-generating function (MGF) design modelling method to conclude an optimum filter to maximize the Q-factor and increase the link communication span. This approach mitigates the pulse temporal dispersion, particularly the underwater wireless optical communication (UWOC) systems. Hence, some form of equalizing filter design is highly desirable. The model solution environment includes a Double Gamma Function (DGF) water channel impulse response, intersymbol interference (ISI), stochastic Poisson process, and additive Gaussian thermal noise (AGTN). The optimal filters exhibit temporal profiles comparable to those derived by published works based on complex Chernoff Bound (CB) and Modified Chernoff Bound (MCB) methods. The results show the impact of the optimum filter at a signal level and optical receiver level utilizing Eye-Diagrams and BER vs. Q-Factor, respectively. The computation involves four different UWOC propagation channel models for Coastal and Harbor waters. One of the main conclusions indicates that the optimum filter manages the temporal dispersion due to the ISI impairment correctly. Also, the proposed optimum filter reduces eye-opening and the corresponding Q-Factor by less than 15% for a five-times increase in pulse width for the same transmitted optical power level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.