Abstract
Abstract Simple inverted reduced-gravity models of flow over deep ocean sills are considered, with emphasis placed on the case for which sills are wide with respect to the abyssal Rossby radius. When the length scale of the flow is also large compared to the Rossby radius, an f-plane version of the planetary geostrophic (PG) equations applies. These equations, however, predict a collapse in scale of the flow so that the PG approximation breaks down and higher-order dynamics must be evoked. Whether or not the collapsing PG dynamics give way to semigeostrophy (SG) or to some other balance regime is also discussed. Next, the steady semigeostrophic equations typically used in rotating hydraulics studies are considered. For relatively wide sills, as well as for narrow sills that are not elongated, the path taken by the overflow is not well constrained by the sill geometry alone. The collapsing PG problem, however, suggests that the appropriate axis of flow follows a branch of the seperatrix isobath. Also sugge...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.