Abstract

A simple model of the dynamic behavior of a diaphragm‐type chlorine/caustic cell is presented. The model is based upon measurable diaphragm properties and the mass transfer of hydroxyl ion through the diaphragm. The anolyte is modeled simply as a region in which the OH− ion concentration is fixed, the diaphragm is modeled as a plug‐flow reactor with an electrochemical reaction occurring at the catholyte/diaphragm interface where the cathode is placed, and the catholyte is modeled as a completely stirred flow reactor. Analytical integration of the governing equations for these models yields two mathematical expressions: one for the concentration distribution of hydroxyl ion within the diaphragm and one for the effluent concentration. Both of these expressions are functions of time, independent operating variables, diaphragm properties, and physical constants. They are used to show how the concentration distribution of OH− within the diaphragm and the cell effluent change when subjected to a step change in the current density. Also presented is a numerical method of solution for the model equations to predict the required change of the cell head subject to an arbitrary time‐dependent change in the current density at a fixed cell effluent concentration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.