Abstract

We analyze high-order harmonic generation (HHG) in a disordered semiconductor within the context of the Anderson model of disorder. Employing the theoretical methods pioneered for the study of disordered metals, we show that disorder is a source of ultrafast dephasing of the HHG signal in semiconductors. Furthermore, it is shown that the dephasing effect induced by disorder on HHG spectra depends on both strength and correlation length of the disorder and very weakly on the frequency and intensity of the laser. Our results suggest that HHG has the potential to be a new spectroscopic tool for the analysis of disordered solids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.