Abstract

A simple model is used to simulate seizures in a population of spiking excitatory neurons experiencing a uniform effect from inhibitory neurons. A key feature is introduced into the model, i.e., a mechanism that weakens the firing thresholds. This weakening mechanism adds memory to the dynamics. We find a seizure-prone state in a "mode-switching" phase. In this phase, the system can suddenly switch from a "healthy" state with small scale-free avalanches to a "seizure" state with almost periodic large avalanches ("seizures"). Simulations of the model predict statistics for the average time spent in the seizure state (the seizure "duration") that agree with experiments and theoretical examples of similar behavior in neuronal systems. Our study points to. different connections between seizures and fracture and also offers an alternative view on the type of critical point controlling neuronal avalanches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.