Abstract

Simple-minded systems of objects in a stable module category are defined by common properties with the set of simple modules, whose images under stable equivalences do form simple-minded systems. Over a representation-finite self-injective algebra, it is shown that all simple-minded systems are images of simple modules under stable equivalences of Morita type, and that all simple-minded systems can be lifted to Nakayama-stable simple-minded collections in the derived category. In particular, all simple-minded systems can be obtained algorithmically using mutations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.