Abstract

In intubated, mechanically ventilated patients, inspiration is forced by externally applied positive pressure. In contrast, exhalation is passive and depends on the time constant of the total respiratory system. The expiratory time constant is thus an important determinant of mechanical ventilation. The aim of this study was to evaluate a simple method for measuring the expiratory time constant in ventilated subjects. Prospective study using a lung simulator and ten dogs. University hospital. Commercially available lung simulator and ten greyhound dogs. Different expiratory time constants were set on the lung simulator. In the dogs, the endotracheal tube was clamped to increase airways resistance by 22.5 cm H2O/(L/sec) and the lungs were injured with hydrochloric acid to decrease total respiratory compliance by 16 mL/cm H2O. This procedure resulted in a wide range of expiratory time constants. Pneumotachography was used to measure flow and volume. The ratio of exhaled volume and peak flow was calculated from these signals, corrected for the limited exhalation time yielding the "calculated expiratory time constant" and compared with the actual expiratory time constant. The typical error was +/- 0.19 sec for the lung simulator and +/- 0.15 sec for the dogs. The volume and peak flow corrected for limited exhalation time is a good estimate of the total expiratory time constant in passive subjects and may be useful for the titration of mechanical ventilation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.