Abstract

A simple minimally perturbative method is introduced which provides the ability to experimentally measure both the radial confining potential and the interaction potential between two individual dust particles, levitated in the sheath of a radio-frequency (RF) argon discharge. In this technique, a single dust particle is dropped into the plasma sheath to interact with a second individual dust particle already situated at the system's equilibrium point, without introducing any external perturbation. The resulting data are analyzed using a method employing a polynomial fit to the particle displacement(s), X(t) , to reduce uncertainty in calculation. Employing this technique, the horizontal confinement is shown to be parabolic over a wide range of pressures and displacements from the equilibrium point. The interaction potential is also measured and shown to be well described by a screened Coulomb potential and to decrease with increasing pressure. Finally, the charge on the particle and the effective dust screening distance are calculated. It is shown for the first time experimentally that the charge on a particle in the sheath of an RF plasma decreases with increasing pressure, in agreement with theoretical predictions. The screening distance also decreases with increasing pressure as expected. This technique can be used for rapid determination of particle parameters in dusty plasma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.