Abstract
A simple physics-based method for estimating optical turbulence (Cn2) within the surface layer over snow and ice is proposed, using the Tatarski equation with an improved outer scale model. This improved outer scale model mainly requires the calculation of the wind shear and temperature gradients. Based on the measurements from a mobile polar atmospheric parameter measurement system at the Antarctic Taishan Station in 2014, Cn2 was estimated using two methods: the Tatarski equation and the Monin-Obukhov similarity (MOS) theory. Compared with 16 days of measurements from a micro-thermometer, the correlation coefficient of log10(Cn2) estimated by the Tatarski equation is 0.72, which is a slightly more accurate Cn2 variation in trend and magnitude than the MOS theory. The results suggest that this simple method has potential value for the forecasting applications of optical turbulence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.