Abstract

As the feature size of integrated circuits shrinks, the demands for the critical dimension (CD) uniformity on wafers are becoming tighter. In the era of low k1, moreover, mask CD uniformity should be controlled even more stringently due to the higher mask error enhancement factor (MEEF). Mask CD non-uniformity can originate from several sources which include photomask blanks and mask-making processes (exposure, post-exposure bake (PEB), development, and etch processes). Analyzing the CD error sources and eliminating the origins are very important tasks in optimization of mask-manufacturing processes. In this paper, we focus on the side error in mask CD uniformity and present a simple method for separating and evaluating the origins. Especially, quantitative analysis of the side errors induced by photomask blanks and mask-making processes, respectively, is given. Photomask blanks are found to be one of the main sources of the side error and it is shown that the temperature distribution of the PEB process during the ramp-up as well as the stable period should be maintained uniformly for chemically amplified resist (CAR) blanks in order to reduce the process-induced side error.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.