Abstract
Knowledge graphs (KGs) serve as a crucial resource for numerous artificial intelligence tasks, significantly contributing to the advancement of the AI field. However, the incompleteness of existing KGs hinders their effectiveness in practical applications. Consequently, researchers have proposed the task of KG completion. Currently, embedding-based techniques dominate the field as they leverage the structural information within KGs to infer and complete missing parts. Nonetheless, these methods exhibit limitations. They are limited by the quality and quantity of structural information and are unable to handle the missing entities in the original KG. To overcome these challenges, researchers have attempted to integrate pretrained language models and textual data to perform KG completion. This approach utilizes the definition statements and description text of entities within KGs. The goal is to compensate for the latent connections that are difficult for traditional methods to obtain. However, text-based methods still lag behind embedding-based models in terms of performance. Our analysis reveals that the critical issue lies in the selection process of negative samples. In order to enhance the performance of the text-based methods, various types of negative sampling methods are employed in this study. We introduced prompt learning to fill the gap between the pre-training language model and the knowledge graph completion task, and to improve the model reasoning level. Simultaneously, a ranking strategy based on KG structural information is proposed to utilize KG structured data to assist reasoning. The experiment results demonstrate that our model exhibits strong competitiveness and outstanding inference speed. By fully exploiting the internal structural information of KGs and external relevant descriptive text resources, we successfully elevate the performance levels of KG completion tasks across various metrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.