Abstract

A simple topological graph is $k$-quasiplanar ($k\geq 2$) if it contains no $k$ pairwise crossing edges, and $k$-planar if no edge is crossed more than $k$ times. In this paper, we explore the relationship between $k$-planarity and $k$-quasiplanarity to show that, for $k \geq 2$, every $k$-planar simple topological graph can be transformed into a $(k+1)$-quasiplanar simple topological graph.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.