Abstract

In this work, we describe an interferometric method to generate ultra-short pulses below the Fourier limit. It is done by extending concepts first developed in the spatial domain to achieve sub-diffractive beams through the addition of a spatial chirp in one of the arms of a Michelson interferometer using a spherical mirror. To experimentally synthesize sub-Fourier pulses, we replace the spherical mirror with a water cell, since it produces chirp in the temporal domain. We also present an alternative procedure, based on asymmetrical interference between the widened pulse and the original pulse where the peaks of both pulses exhibit a temporal delay achieving the narrowing of ultra-short pulses with sub-Fourier scales. To characterize the performance of the system, we performed a preliminary assessment considering the percentage of full width at half-maximum shrinking obtained for each scheme. By means of a symmetrical configuration, 7% and 12% pulse reductions were verified, both experimentally and analytically, while for the non-symmetrical configuration, 10% and 24% reductions were achieved corresponding to main lobe to side-lobe ratios of 10% and 30%. The experimental setup scheme is simple, versatile and able to work with high-power laser sources and ultra-short pulses with a broad bandwidth at any central wavelength. The results presented in this work are promising and help to enlighten new routes and strategies in the design of coherent control systems. We envision that they will become broadly useful in different areas from strong field domain to quantum information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.