Abstract

Thermal energy storage is a technology used mostly in buildings and industries in order to preserve thermal energy so that the stored energy can be used at a later time. Thermal stratification during the charge process in a cylindrical water tank was investigated using tools of Computational Fluid Dynamics (CFD). Simulations were validated by means of experimental measurements of time-dependent temperature profiles. The results showed that the model was able to adequately capture the experimental temperature evolution in the tank for all the validation cases. Once validated the model, simple modifications of the usual inlet devices and inflow rate by CFD techniques were accomplished with the intention of improving the tank performance. It was found that the modifications of the simulated inlet devices affected the stratification level. This could lead to improve designs and optimize system efficiency. The analyses confirmed numerically the results obtained experimentally, and it was evidenced that a sintered bronze conical diffuser can improve stratification compared to a conventional bronze elbow inlet. Therefore, CFD techniques proved to be quite a valuable complement of experimental studies. The use of low inflow, smooth out inlet velocity and operate inflow upwards near the top of the tank enhanced stratification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.