Abstract
With increased utilisation of simple fabrics in technical engineering and manufacturing environments the need for suitable, easy to implement material representations in simulation software has increased. A simple implementation of plain woven polypropylene fabric for inflation simulation of dunnage bags is developed. Only standard finite element software packages and a simple material calibration protocol based on numerical optimisation were used to generate a homogenised material representation for the in-plane properties of plain woven polypropylene undergoing both loading and unloading. This is achieved by performing a simple material test that represents the in situ loading state of the material, measuring the applied load and material deformation in response to that load, and mapping that response to a simulation of the same test by means of an inverse problem statement. Following the proposed method, a material response model for plain wove polypropylene was developed that captures the major responses of a measured woven test specimen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.