Abstract

Recording and prediction of the accumulated damage, which will eventually lead to the failure of power electronic modules, is an aspect of high importance for power electronic systems design and, in particular, for development of Prognostic and Health Management (PHM) schemes for in-field applications. To this end, this paper presents a simple and cost-effective prognostic method for predicting the remaining useful life (RUL) of TO-247 packaged silicon carbide (SiC) metal-oxide semiconductor field-effect transistors (MOSFETs) subjected to power cycling experiments. The model assumes that the major failure mode is bond-wire lift-off and uses a damage accumulation scheme based on Paris’ crack law. The only inputs to the model are historical data on the average junction temperature swing and the temperature-compensated drain-source ON-state resistance at the peak temperature of the current cycle. Using only these two input values, the model is shown to predict RUL with surprising accuracy for the range of constant current loads determining cycling conditions under which the test data series have been acquired. This work is a first step in an ongoing project towards building more elaborate prognostic schemes for RUL-determination of SiC power MOSFETs in actual working conditions, using physics-informed neural networks (PINNs).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.