Abstract

In recent decades, the development of several products and hurricane-related models has attempted to predict the dynamic conditions of these systems and regions beyond they can impact. Thus, this article presents a parametric model to describe wind asymmetry in these systems. For this, the analysis of this model was applied in Hurricane Ike, which occurred in September 2008. In this model, the tangential wind field above the boundary layer was considered in balance with the thermal wind. It was possible to identify that as Hurricane Ike evolves, tangential velocity also evolves. Thus, there was a change in static, baroclinic, and inertial stability. An exponential radial reduction was included for maximum speed, and, therefore, the maximum winds always to the right of the hurricane displacement were identified. In addition, pumping near the surface had an influx into this system induced caused by drag between the air and the surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.