Abstract
We introduce a new approach for implementing cryptographic arithmetic in short high-level code with machine-checked proofs of functional correctness. We further demonstrate that simple partial evaluation is sufficient to transform into the fastest-known C code, breaking the decades-old pattern that the only fast implementations are those whose instruction-level steps were written out by hand. These techniques were used to build an elliptic-curve library that achieves competitive performance for 80 prime fields and multiple CPU architectures, showing that implementation and proof effort scales with the number and complexity of conceptually different algorithms, not their use cases. As one outcome, we present the first verified high-performance implementation of P-256, the most widely used elliptic curve. implementations from our library were included in BoringSSL to replace existing specialized code, for inclusion in several large deployments for Chrome, Android, and CloudFlare.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.