Abstract

Tensor networks are the main building blocks in a wide variety of computational sciences, ranging from many-body theory and quantum computing to probability and machine learning. Here we propose a parallel algorithm for the contraction of tensor networks using probabilistic graphical models. Our approach is based on the heuristic solution of the $\mu$-treewidth deletion problem in graph theory. We apply the resulting algorithm to the simulation of random quantum circuits and discuss the extensions for general tensor network contractions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.